

Radar Systems Engineering Lecture 6 Detection of Signals in Noise

Dr. Robert M. O'Donnell IEEE New Hampshire Section Guest Lecturer

IEEE New Hampshire Section

IEEE AES Society

Radar Systems Course 1 Detection 1/1/2010

- Probabilities of detection and false alarm
- Signal-to-noise ratio
- Integration of pulses
- Fluctuating targets
- Constant false alarm rate (CFAR) thresholding
- Summary

- Mission Detect and track all aircraft within 60 nmi of radar
- S-band $\lambda \sim 10$ cm

Range-Azimuth-Doppler Cells to Be Thresholded

Radar Systems Course 5 Detection 11/1/2010 E New Hampshire Section IEEE AES Society

- Received background noise fluctuates randomly up and down
- The target echo also fluctuates.... Both are random variables!
- To decide if a target is present, at a given range, we need to set a threshold (constant or variable)
- Detection performance (Probability of Detection) depends of the strength of the target relative to that of the noise and the threshold setting
 - Signal-To Noise Ratio and Probability of False Alarm

	Radar Receiver	Measurement	t Detection	Decision
		X	Processing	\mathbf{H}_{0} or \mathbf{H}_{1}
For each measurement There are two possibilities:		Measurement	Probability Density	
Target absent hypothesis, ${f H}_{_0}$ Noise only		$\mathbf{x} = \mathbf{n}$	$\mathbf{p}(\mathbf{x} \mathbf{H}_0)$	
Target present hypothesis, \mathbf{H}_{1} Signal plus noise		$\mathbf{x} = \mathbf{a} + \mathbf{n}$	$\mathbf{p}(\mathbf{x} \mathbf{H}_1)$	

- $P_{\rm D}$ increases with target SNR for a fixed threshold ($P_{\rm FA}$)
- Raising threshold reduces false alarm rate and increases SNR required for a specified Probability of Detection

Is Marcum's Q-Function (and I₀(x) is a modified Bessel function)

Radar Systems Course 12 Detection 11/1/2010

Probability of Detection vs. SNR

Radar Systems Course 15 Detection 11/1/2010

Probability of Detection vs. Probability of False Alarm and Signal-to-Noise Ratio

• Basic concepts

- Fluctuating targets
- Constant false alarm rate (CFAR) thresholding
- Summary

- Phase is preserved
- pulse-to-pulse phase coherence required
- SNR Improvement = $10 \log_{10} N$

- Adds 'powers' not voltages
- Phase neither preserved nor required
- Easier to implement, not as efficient

Detection performance can be improved by integrating multiple pulses

Integration of Pulses

Different Types of Non-Coherent Integration

- Non-Coherent Integration Also called ("video integration")
 - Generate magnitude for each of N pulses
 - Add magnitudes and then threshold
- Binary Integration (*M*-of-*N* Detection)
 - Separately threshold each pulse
 - 1 if signal > threshold; 0 otherwise
 - Count number of threshold crossings (the # of 1s)
 - Threshold this sum of threshold crossings
 Simpler to implement than coherent and non-coherent
- Cumulative Detection (1-of-N Detection)
 - Similar to Binary Integration
 - Require at least 1 threshold crossing for N pulses

Detection Statistics for Binary Integration

- Optimum M varies somewhat with target fluctuation model, $P_{\rm D}$ and $P_{\rm FA}$
- Parameters for Estimating M_{OPT} = N^a 10^b

Target Fluctuations	<u>a</u>	<u>b</u>	<u>Range of N</u>
No Fluctuations	0.8	- 0.02	5 – 700
Swerling I	0.8	- 0.02	6 – 500
Swerling II	0.91	- 0.38	9 – 700
Swerling III	0.8	- 0.02	6 – 700
Swerling IV	0.873	- 0.27	10 – 700

Adapted from Shnidman in Richards, reference 7

IEEE New Hampshire Section IEEE AES Society

Detection Statistics for Different Types of Integration

Radar Systems Course 25 Detection 11/1/2010

Detection Statistics for Different Types of Integration

Detection Statistics for Different Types of Integration

Effect of Pulse to Pulse Correlation on Non-Coherent Integration Gain

 Non-coherent Integration Can Be Very Inefficient in Correlated Clutter

> IEEE New Hampshire Section IEEE AES Society

Effect of Pulse to Pulse Correlation on Non-Coherent Integration Gain

Non-coherent Integration Can Be Very Inefficient in Correlated Clutter

Adapted from nathanson, Reference 8

IEEE New Hampshire Section IEEE AES Society

Radar Systems Course 30 Detection 11/1/2010

Albersheim Empirical Formula for SNR

(Steady Target - Good Method for Approximate Calculations)

- Single pulse: SNR(natural units) = A + 0.12 A B + 1.7 B - Where: $A = log_e \left(\frac{0.62}{P}\right)$ $B = log_e \left(\frac{P_D}{1-P}\right)$
 - Less than .2 dB error for:

$$10^{-3} > P_{FA} > 10^{-7}$$
 $0.9 > P_{D} > 0.1$

- Target assumed to be non-fluctuating
- For n independent integrated samples:

$$SNR_{n}(dB) = -5 \log_{10} n + \left(6.2 + \frac{4.54}{\sqrt{n+0.44}} \right) \log_{10} \left(A + 0.12 A B + 1.7 B \right)$$

$$- Less than .2 dB error for:$$

$$8096 > n > 1 \qquad 10^{-3} > P_{FA} > 10^{-7} \qquad 0.9 > P_{D} > 0.1$$

$$- For more details, see References 1 or 5$$

- Basic concepts
- Integration of pulses

- Constant false alarm rate (CFAR) thresholding
- Summary

RCS vs. Azimuth for a Typical Complex Target

RCS versus Azimuth

- For many types of targets, the received radar backscatter amplitude of the target will vary a lot from pulse-to-pulse:
 - Different scattering centers on complex targets can interfere constructively and destructively
 - Small aspect angle changes or frequency diversity of the radar's waveform can cause this effect
- Fluctuating target models are used to more accurately predict detection statistics (P_D vs., P_{FA,} and S/N) in the presence of target amplitude fluctuations

Noture of	RCS Model	Fluctuation Rate	
Scattering		Slow Fluctuation "Scan-to-Scan"	Fast Fluctuation "Pulse-to-Pulse"
Similar amplitudes	Exponential (Chi-Squared DOF=2) $p(\sigma) = \frac{1}{\overline{\sigma}} exp\left(-\frac{\sigma}{\overline{\sigma}}\right)$	Swerling I	Swerling II
One scatterer much Larger than others	(Chi-Squared DOF=4) $p(\sigma) = \frac{4\sigma}{\overline{\sigma}^2} \exp\left(-\frac{2\sigma}{\overline{\sigma}}\right)$	Swerling III	Swerling IV

$$\overline{\sigma}$$
 = Average RCS (m²)

Courtesy of MIT Lincoln Laboratory Used with permission

IEEE New Hampshire Section IEEE AES Society

Radar Systems Course 34 Detection 11/1/2010

Noturo of	Amplitudo	Fluctuation Rate	
Scattering	Model	Slow Fluctuation "Scan-to-Scan"	Fast Fluctuation "Pulse-to-Pulse"
Similar amplitudes	Rayleigh		
ANT C	$\mathbf{p}(\mathbf{a}) = \frac{2\mathbf{a}}{\overline{\sigma}} \exp\left(-\frac{\mathbf{a}^2}{\overline{\sigma}}\right)$	Swerling I	Swerling II
One scatterer much Larger than others	Central Rayleigh, DOF=4 $p(a) = \frac{8 a^{3}}{\overline{\sigma}^{2}} exp\left(-\frac{2 a^{2}}{\overline{\sigma}}\right)$	Swerling III	Swerling IV

 $\overline{\sigma}$ = Average RCS (m²)

Courtesy of MIT Lincoln Laboratory Used with permission

IEEE New Hampshire Section IEEE AES Society

- Detection Statistics Calculations
 - Steady and Swerling 1,2,3,4 Targets in Gaussian Noise
 - Chi- Square Targets in Gaussian Noise
 - Log Normal Targets in Gaussian Noise
 - Steady Targets in Log Normal Noise
 - Log Normal Targets in Log Normal Noise
 - Weibel Targets in Gaussian Noise
- Chi Square, Log Normal and Weibel Distributions have long tails
 - One more parameter to specify distribution
 Mean to median ratio for log normal distribution
- When used

_	Ground clutter	Weibel	
_	Sea Clutter	Log Normal	
_	HF noise	Log Normal	
—	Birds	Log Normal	
—	Rotating Cylinder	Log Normal	
			IFFF Now Hampshir

IEEE New Hampshire Section IEEE AES Society

RCS Variability for Different Target Models

Fluctuating Target Single Pulse **Detection : Rayleigh Amplitude**

Radar Systems Course 38 Detection 11/1/2010

Fluctuating Target Single Pulse Detection

For high detection probabilities, more signal-to-noise is required for fluctuating targets.

The fluctuation loss depends on the target fluctuations, probability of detection, and probability of false alarm.

Fluctuating Target Multiple Pulse Detection

Detection Statistics for Different Target

Radar Systems Course 41 Detection 11/1/2010

Shnidman Empirical Formulae for SNR

(for Steady and Swerling Targets)

- Analytical forms of SNR vs. P_D, P_{FA}, and Number of pulses are quite complex and not amenable to BOTE* calculations
- Shnidman has developed a set of empirical formulae that are quite accurate for most 1st order radar systems calculations:

$$K = \begin{cases} \infty & \text{Non-fluctuating target ("Sigma 1, Swerling Case 1)} \\ N, & \text{Swerling Case 2} \\ 2, & \text{Swerling Case 3} \\ 2N & \text{Swerling Case 4} \end{cases}$$
$$\alpha = \begin{cases} 0 & N \le 40 \\ \frac{1}{4} & N > 40 \end{cases}$$

$$\eta = \sqrt{-0.8 \ln(4 P_{FA} (1 - P_{FA}))} + sign(P_{D} - 0.5) \sqrt{-0.8 \ln(4 P_{D} (1 - P_{D}))}$$

Adapted from Shnidman in Richards, Reference 7

* Back of the Envelope

IEEE New Hampshire Section IEEE AES Society

Shnidman Empirical Formulae for SNR

(for Steady and Swerling Targets)

$$\begin{split} \mathbf{X}_{\infty} &= \eta \Bigg(\eta + 2\sqrt{\frac{N}{2}} + \Bigg(\alpha - \frac{1}{4} \Bigg) \Bigg) \\ \mathbf{C}_{1} &= \left(\left((\mathbf{17.7006} \ \mathbf{P}_{\mathrm{D}} - \mathbf{18.4496} \right) \mathbf{P}_{\mathrm{D}} + \mathbf{14.5339} \right) \mathbf{P}_{\mathrm{D}} - \mathbf{3.525} \right) / \mathbf{K} \\ \mathbf{C}_{2} &= \frac{1}{\mathbf{K}} \Bigg(\mathbf{e}^{27.31 \ \mathbf{P}_{\mathrm{D}} - 25.14} + \Big(\mathbf{P}_{\mathrm{D}} - \mathbf{0.8} \Big) \Bigg(\mathbf{0.7 \ln} \Bigg(\frac{\mathbf{10}^{-5}}{\mathbf{P}_{\mathrm{FA}}} \Bigg) + \frac{\left(2 \ \mathbf{N} - \mathbf{20} \right)}{\mathbf{80}} \Bigg) \Bigg) \end{split}$$

$$C_{dB} = \begin{cases} C_{1} & 0.1 \le P_{D} \le 0.872 \\ C_{1} + C_{2} & 0.872 \le P_{D} \le 0.99 \end{cases}$$

$$C = 10^{\frac{C_{dB}}{10}}$$

$$C = 10^{\frac{C_{dB}}{10}}$$

$$C = 10^{\frac{C_{dB}}{10}}$$

$$C = 10^{\frac{C_{dB}}{10}}$$

Adapted from Shnidman in Richards, Reference 7

IEEE New Hampshire Section IEEE AES Society

Radar Systems Course 43 Detection 11/1/2010

Radar Systems Course 44 Detection 11/1/2010

IEEE AES Society

- Basic concepts
- Integration of pulses
- Fluctuating targets

Constant false alarm rate (CFAR) thresholding

• Summary

- Need to develop a methodology to set target detection threshold that will adapt to:
 - Temporal and spatial changes in the background noise
 - Clutter residue from rain, other diffuse wind blown clutter,
 - Sharp edges due to spatial transitions from one type of background (e.g. noise) to another (e.g. rain) can suppress targets
 - Background estimation distortions due to nearby targets

Constant False Alarm Rate (CFAR) Thresholding

- Set threshold as constant times the mean value of background
- Mean Background Estimate = $\frac{1}{N} \sum_{n=1}^{N} x_n$

IEEE New Hampshire Section IEEE AES Society

IEEE AES Society

Mean Level Threshold CFAR

Mean Level Threshold CFAR

- Find mean value of N/2 cells before and after test cell separately
- Use larger noise estimate to determine threshold

- Helps reduce false alarms near sharp clutter or interference boundaries
- Nearby targets still raise threshold and suppress detection

Courtesy of MIT Lincoln Laboratory Used with permission

 Compute and use noise estimates as in Greatest-of, but remove the largest M samples before computing each average

- Up to M nearby targets can be in each window without affecting threshold
- Ordering the samples from each window is computationally expensive

CFAR Loss vs. Number of Reference Cells

The greater the number of reference cells in the CFAR, the better is the estimate of clutter or noise and the less will be the loss in detectability. (Signal to Noise Ratio)

Adapted from Skolnik, Reference 1

IEEE New Hampshire Section IEEE AES Society

- Both target properties and radar design features affect the ability to detect signals in noise
 - Fluctuating targets vs. non-fluctuating targets
 - Allowable false alarm rate and integration scheme (if any)
- Integration of multiple pulses improves target detection
 - Coherent integration is best when phase information is available
 - Noncoherent integration and frequency diversity can improve detection performance, but usually not as efficient
- An adaptive detection threshold scheme is needed in real environments
 - Many different CFAR (Constant False Alarm Rate) algorithms exist to solve various problems
 - All CFARs algorithms introduce some loss and additional processing

- 1. Skolnik, M., *Introduction to Radar Systems*, McGraw-Hill, New York, 3rd Ed., 2001.
- 2. Skolnik, M., *Radar Handbook*, McGraw-Hill, New York, 3rd Ed., 2008.
- 3. DiFranco, J. V. and Rubin, W. L., *Radar Detection*, Artech House, Norwood, MA, 1994.
- 4. Whalen, A. D. and McDonough, R. N., *Detection of Signals in Noise,* Academic Press, New York, 1995.
- 5. Levanon, N., Radar Principles, Wiley, New York, 1988
- 6. Van Trees, H., Detection, Estimation, and Modulation Theory, Vols. I and III, Wiley, New York, 2001
- 7. Richards, M., *Fundamentals of Radar Signal Processing,* McGraw-Hill, New York, 2005
- 8. Nathanson, F., *Radar Design Principles*, McGraw-Hill, New York, 2rd Ed., 1999.

- From Skolnik, Reference 1
 - Problems 2.5, 2.6, 2.15, 2.17, 2.18, 2.28, and 2.29
 - Problems 5.13 , 5.14, and 5-18