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Outline

• Basic concepts
– Probabilities of detection and false alarm
– Signal-to-noise ratio

• Integration of pulses

• Fluctuating targets

• Constant false alarm rate (CFAR) thresholding

• Summary
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Radar Detection –
 

“The Big Picture”

• Mission –

 

Detect and 
track all aircraft within 
60 nmi of radar

• S-band  λ

 

~ 10 cm

Example –

 

Typical Aircraft Surveillance Radar
ASR-9

Courtesy of MIT Lincoln Laboratory
Used with permission

Rotation
Rate

12. rpm

Range
60 nmi.

Transmits
Pulses at
~ 1250 Hz



Radar Systems Course    5
Detection  11/1/2010

IEEE New Hampshire Section
IEEE AES Society

Range-Azimuth-Doppler Cells to Be 
Thresholded

Rotation
Rate

12.7 rpm

10 Pulses / Half BW
Processed into

10 Doppler Filters

Example –

 

Typical Aircraft Surveillance Radar
ASR-9

Range -

 

Azimuth -

 

Doppler Cells
~1000 Range cells
~500 Azimuth cells
~8-10 Doppler cells

5,000,000 Range-Az-Doppler Cells
to be threshold every 4.7 sec.
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Transmits
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Target Detection in Noise

• Received background noise fluctuates randomly up and down
• The target echo also fluctuates…. Both are random variables!
• To decide if a target is present, at a given range, we need to set a 

threshold (constant or variable)
• Detection performance (Probability of Detection) depends of the 

strength of the target relative to that of the noise and the threshold 
setting

– Signal-To Noise Ratio

 

and Probability of False Alarm
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The Radar Detection Problem

Radar
Receiver

Detection
Processing

Measurement Decision

x
10 HH or

nx =

Measurement Probability
Density

Target absent hypothesis, 
Noise only
Target present hypothesis, 
Signal plus noise nax +=

)Hx(p 0

1H )Hx(p 1

For each measurement 
There are two possibilities:

For each measurement 
There are four decisions:

0H

0H 1H

1H

Don’t 
Report

False
Alarm

DetectionMissed
Detection

Truth

Decision

0H
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Maximize       subject to        no greater than specified FAPDP
( )α≤FAP

Threshold Test is Optimum

0H

0H 1H

1H

Don’t 
Report

False
Alarm

DetectionMissed
Detection

Truth

Decision
Probability of Detection:

Probability of False Alarm:

DP

FAP

The probability we choose 
when       is true

The probability we choose 
when       is true

1H 1H

1H 0H

Likelihood Ratio Test 

> η=
)Hx(p
)Hx(p

)x(L
0

1

<
1H

0H

Likelihood
Ratio Threshold

Objective:
Neyman-Pearson
criterion
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Basic Target Detection Test
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Probability of False Alarm ( PFA ) 
PFA

 

= Prob{ threshold exceeded given target absent }

 
i.e. the chance that noise is called a (false) target

 
We want PFA to be very, very low!

Probability of False Alarm ( PFA ) 
PFA

 

= Prob{ threshold exceeded given target absent }

 
i.e. the chance that noise is called a (false) target
We want PFA to be very, very low!

Courtesy of MIT Lincoln Laboratory
Used with permission
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Basic Target Detection Test
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Noise

 
Probability Density

Signal-Plus-Noise

 
Probability Density

Probability of

 
False Alarm ( PFA )

 

Probability of

 
False Alarm ( PFA )

Signal + Noise
Target Present

Probability of Detection ( PD ) 
PD

 

= Prob{ threshold exceeded given target present }

 I.e. the chance that target is correctly detected

 
We want PD to be near 1 (perfect)!

Probability of Detection ( PD ) 
PD

 

= Prob{ threshold exceeded given target present }

 I.e. the chance that target is correctly detected
We want PD to be near 1 (perfect)!

)Hx(p 1

Courtesy of MIT Lincoln Laboratory
Used with permission
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Signal Plus Noise
SNR = 10 dB
PD

 

= 0.61

Signal Plus Noise
SNR = 20 dB
PD

 

~ 1

Detection Examples with Different SNR

• PD

 

increases with target SNR for a fixed threshold (PFA

 

)
• Raising threshold reduces false alarm rate and increases 

SNR required for a specified Probability of Detection

 

• PD

 

increases with target SNR for a fixed threshold (PFA

 

)
• Raising threshold reduces false alarm rate and increases 

SNR required for a specified Probability of Detection
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Non-Fluctuating Target Distributions
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Set threshold rT based

 
on desired false-alarm probability

Compute detection probability for
given SNR and false-alarm probability

Is Marcum’s Q-Function
(and I0 (x) is a modified Bessel function)

where

Rayleigh Rician
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Probability of Detection vs. SNR
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Remember

 
This!
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Probability of Detection vs. SNR

SNR = 13.2 dB

 
needed for

 
PD

 

= 0.9 and

 
PFA

 

= 10-6

Steady Target

Remember

 
This!
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Tree of Detection Issues

Detection

Non-Fluctuating

Multiple pulses

Swerling I

Fluctuating

Fluctuating

Single Pulse

Square Law Detector

Coherent
Integration

Single Pulse
Decision

Binary
Integration

Non-Coherent
Integration

Linear Detector

Non-Fluctuating

Uncorrelated

Swerling IISwerling III Swerling IV

Fully  Correlated Partially Correlated
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Detection Calculation Methodology

Probability of Detection vs. Probability of False Alarm and Signal-to-Noise Ratio

Determine PDF at 
Detector Output

• Single pulse
• Fixed S/N

Integrate N fixed 
target pulses

Scan to Scan Fluctuations 
(Swerling Case I and III)

Pulse to Pulse Fluctuations 
(Swerling Case II and IV)

Average over 
signal fluctuations

Integrate over N 
pulses

Average over 
target fluctuations

Integrate from 
threshold, T, to ∞

PD

 

vs. PFA

 

, S/N, &
Number of pulses, N
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Outline

• Basic concepts

• Integration of pulses

• Fluctuating targets

• Constant false alarm rate (CFAR) thresholding

• Summary
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Integration of Radar Pulses

Detection performance can be improved by integrating 
multiple pulses

Calculate

Threshold
Calculate

Coherent Integration Noncoherent Integration

• Adds ‘voltages’

 

, then square
• Phase is preserved
• pulse-to-pulse phase coherence required
• SNR Improvement = 10 log10

 

N

• Adds ‘powers’

 

not voltages
• Phase neither preserved nor required
• Easier to implement, not as efficient

…

Pulses

Tx
N
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2N
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=
Tx

N
1 N
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… 2N
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2
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2
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Integration of Pulses

Signal to Noise Ratio per Pulse (dB)
0                 5                 10                15
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0.4

For Most Cases, Coherent Integration is More Efficient
than Non-Coherent Integration 

0.2

0.8
Steady
Target

PFA

 

=10-6

One Pulse

Ten Pulses
Coherent 
Integration

Ten Pulses
Non-Coherent 

Integration

Coherent
Integration

Gain

Non-Coherent
Integration

Gain
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Different Types of Non-Coherent Integration

• Non-Coherent Integration –

 

Also called (“video integration”) 
– Generate magnitude for each of N pulses
– Add magnitudes and then threshold

• Binary Integration (M-of-N Detection)
– Separately threshold each pulse

 1 if signal > threshold; 0 otherwise

– Count number of threshold crossings (the # of 1s)
– Threshold this sum of threshold crossings

 Simpler to implement than coherent and non-coherent

• Cumulative Detection (1-of-N Detection)
– Similar to Binary Integration
– Require at least 1 threshold crossing for N pulses
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Calculate

Binary (M-of-N) Integration

Threshold
T

Calculate
Sum

…

Pulse 1

Pulse 2

Pulse

Threshold
T

Threshold
T

2nd

 

Threshold
M

Individual pulse detectors:

Target present if at least M detections in  N pulses

1x
1i

Nx
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1i,Tx n
2

n =≥

∑
=

=
N

1n
nim

N

2nd thresholding:

2i

Ni

0i,Tx n
2

n =<
Mm ≥
Mm <

, target present
, target absent

At Least
M of N

Detections

At Least
1 of N( ) ( ) kNk

N

Mk
N/M p1p

!kN!k
!NP −

=

−
−

= ∑ ( ) N
C p11P −−=

2
1x

Calculate
2
2x

Calculate
2
Nx

Binary Integration Cumulative Detection
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Detection Statistics for Binary Integration 

Signal to Noise Ratio per Pulse (dB)
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Optimum M for Binary Integration

O
pt

im
um

 M

1

10

100

1 10 100
Number of Pulses

Steady
(Non-Fluctuating ) 

Target

PD

 

=0.95

PFA

 

=10-6

For each binary Integrator,  M/N,
there exists an optimum M

M (optimum) ≈

 

0.9 N0.8
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Optimum M for Binary Integration

• Optimum M varies somewhat with target fluctuation model, 
PD and PFA

• Parameters for Estimating MOPT = Na 10b

Adapted from Shnidman in Richards, reference 7 

Target Fluctuations

 

a

 

b

 

Range of N
No Fluctuations

 

0.8              -

 

0.02                5 –

 

700
Swerling I                               0.8              -

 

0.02                6 –

 

500
Swerling II    0.91            -

 

0.38                9 –

 

700
Swerling III                             0.8              -

 

0.02                6 –

 

700
Swerling IV                            0.873          -

 

0.27                10 –

 

700
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Detection Statistics for Different Types 
of Integration

PFA

 

=10-6

Coherent and Non-Coherent Integration
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Detection Statistics for Different Types 
of Integration

Coherent and Non-Coherent Integration
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Detection Statistics for Different Types 
of Integration

Coherent and Non-Coherent Integration
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Signal to Noise  Gain / Loss vs. # of Pulses

Number of Pulses Number of Pulses
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• Coherent Integration yields the greatest gain
• Non-Coherent Integration a small loss
• Binary integration has a slightly larger loss than regular 

Non-coherent integration

Coherent

Binary
(Optimum M)

Binary N1/2

Non-Coherent

Binary N1/2

Binary
(Optimum M)

Non-Coherent

Relative
To Coherent
Integration
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Effect of Pulse to Pulse Correlation on 
Non-Coherent Integration Gain

• Non-coherent Integration Can Be Very Inefficient 
in Correlated Clutter
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Effect of Pulse to Pulse Correlation on 
Non-Coherent Integration Gain

• Non-coherent Integration Can Be Very Inefficient 
in Correlated Clutter
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Adapted from nathanson, Reference 8
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Albersheim Empirical Formula for SNR
 (Steady Target -

 

Good Method for Approximate Calculations)

• Single pulse:

– Where:

– Less than .2 dB error for:

– Target assumed to be non-fluctuating
• For n independent integrated samples:

– Less than .2 dB error for:

– For more details, see References 1 or 5
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Outline

• Basic concepts

• Integration of pulses

• Fluctuating targets

• Constant false alarm rate (CFAR) thresholding

• Summary
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Fluctuating Target Models

• For many types of targets, the 
received radar backscatter 
amplitude of the target will vary a 
lot from pulse-to-pulse:

– Different scattering centers on 
complex targets can interfere 
constructively and destructively

– Small aspect angle changes or 
frequency diversity of the 
radar’s waveform can cause this 
effect

• Fluctuating target models are 
used to more accurately predict 
detection statistics (PD

 

vs., PFA, 
and S/N) in the presence of target 
amplitude fluctuationsRCS versus Azimuth

B-26, 3 GHz

RCS vs. Azimuth for a Typical Complex Target
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Swerling Target Models

=σ Average RCS (m2)

RCS
Model

Nature of
Scattering Fast Fluctuation

“Pulse-to-Pulse”
Slow Fluctuation
“Scan-to-Scan”

Fluctuation Rate

Swerling I 

Swerling IV Swerling III 

Swerling II 

Similar amplitudes

One scatterer much
Larger than others

Exponential
(Chi-Squared DOF=2)

(Chi-Squared DOF=4)
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Courtesy of MIT Lincoln Laboratory
Used with permission
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Swerling Target Models

Amplitude
Model

Nature of
Scattering Fast Fluctuation

“Pulse-to-Pulse”
Slow Fluctuation
“Scan-to-Scan”

Fluctuation Rate

Swerling I 

Swerling IV Swerling III 

Swerling II 

Similar amplitudes

One scatterer much
Larger than others

=σ Average RCS (m2)

Central Rayleigh,
DOF=4

Rayleigh
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Courtesy of MIT Lincoln Laboratory
Used with permission
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Other Fluctuation Models

• Detection Statistics Calculations
– Steady and Swerling 1,2,3,4 Targets in Gaussian Noise
– Chi-

 

Square Targets in Gaussian Noise 
– Log Normal Targets in Gaussian Noise 
– Steady Targets in Log Normal Noise
– Log Normal Targets in Log Normal Noise
– Weibel Targets in Gaussian Noise

• Chi Square, Log Normal and Weibel Distributions have 
long tails

– One more parameter to specify distribution
 Mean to median ratio for log normal distribution

• When used
– Ground clutter

 

Weibel
– Sea Clutter

 

Log Normal
– HF noise

 

Log Normal
– Birds

 

Log Normal
– Rotating Cylinder

 

Log Normal
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RCS Variability for Different
 Target Models
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Fluctuating Target Single Pulse
 Detection : Rayleigh Amplitude 
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Fluctuating Target Single Pulse Detection
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Fluctuation Loss

For high detection probabilities, more signal-to-noise is required for 
fluctuating targets.
The fluctuation loss depends on the target fluctuations, probability of 
detection, and probability of false alarm.
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Fluctuating Target Multiple Pulse Detection
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N=4 Pulses

• In some fluctuating target cases, non-coherent integration with 
frequency diversity (pulse to pulse) can outperform coherent 
integration
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Detection Statistics for Different Target 
Fluctuation Models

Steady Target
Swerling Case I
Swerling Case II
Swerling Case III

Swerling Case IV
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Adapted from Richards, Reference 7
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Shnidman Empirical Formulae for SNR
 (for Steady and Swerling Targets)

• Analytical forms of SNR vs. PD

 

, PFA

 

, and  Number of pulses 
are quite complex and not amenable to BOTE* calculations

• Shnidman has developed a set of empirical formulae that 
are quite accurate for most 1st

 

order radar systems 
calculations:

* Back of the Envelope
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Adapted from Shnidman in Richards, Reference 7
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Shnidman Empirical Formulae for SNR
 (for Steady and Swerling Targets)
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Shnidman’s Equation

• Error in SNR < 0.5 dB within these bounds
– 0.1 ≤

 

PD ≤

 

0.99          10-9
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Adapted from Shnidman in Richards, Reference 7
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Outline

• Basic concepts

• Integration of pulses

• Fluctuating targets

• Constant false alarm rate (CFAR) thresholding

• Summary
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Practical Setting of Thresholds

• Need to develop a methodology to set target detection 
threshold that will adapt to:

– Temporal and spatial changes in the background noise
– Clutter residue from rain, other diffuse wind blown clutter,
– Sharp edges due to spatial transitions from one type of 

background (e.g. noise) to another (e.g. rain) can suppress 
targets

– Background estimation distortions due to nearby targets

Display, NEXRAD Radar, of Rain Clouds

Range (nmi) 

Rain
Cloud Receiver

Noise

0                                               1               2

S-Band Data

0

20

40
Rain Backscatter Data
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Little variation in Noise
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w
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Courtesy of NOAA
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Constant False Alarm Rate (CFAR) 
Thresholding

• Estimate background (noise, etc.) from data
– Use range, or range and Doppler filter data
– Set threshold as constant times the mean value of background

• Mean Background Estimate = 

CFAR Window –

 

Range Cells CFAR Window –

 

Range and Doppler Cells
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Effect of Rain on CFAR Thresholding

Cell Under Test

“Guard”

 

Cells

Data Cells for Mean Level Computation

Window Slides Through Data

2.2 dB
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Rain Cloud

C Band
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Receiver Noise
Receiver Noise

Range Cells

Mean Level Threshold CFAR

Courtesy of MIT Lincoln Laboratory
Used with permission
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Effect of Rain on CFAR Thresholding
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Sharp Clutter or Interference Boundaries 
Can Lead to Excessive False Alarms
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Courtesy of MIT Lincoln Laboratory
Used with permission
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Greatest-of Mean Level CFAR

• Find mean value of N/2 cells before and after test cell 
separately

• Use larger noise estimate to determine threshold

• Helps reduce false alarms near sharp clutter or interference 
boundaries

• Nearby targets still raise threshold and suppress detection

Cell Under Test

“Guard”

 

CellsData Cells for Mean Level 1

Window Slides Through Data

Data Cells for Mean Level 2

Use Larger Value

Courtesy of MIT Lincoln Laboratory
Used with permission
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Censored Greatest-of CFAR

• Compute and use noise estimates as in Greatest-of, but 
remove the largest M samples before computing each 
average

• Up to M nearby targets can be in each window without 
affecting threshold

• Ordering the samples from each window is computationally 
expensive

Cell Under Test

“Guard”

 

CellsData Cells for Mean Level 1

Window Slides Through Data

Data Cells for Mean Level 2

Use Larger Value

“Censored”

 

Data (Not Used
in Computation of Average)
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Mean Level CFAR Performance

PFA

 

=10-6
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CFAR Loss vs. Number of Reference Cells

PFA

 

=10-8
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= 0.9

The greater the number of reference cells in the CFAR, the better is 
the estimate of clutter or noise and the less will be the loss in 
detectability. (Signal to Noise Ratio)

Adapted from Richards, Reference 7



Radar Systems Course    54
Detection  11/1/2010

IEEE New Hampshire Section
IEEE AES Society

CFAR Loss vs Number of Reference Cells 

For Single Pulse Detection   
Approximation

CFAR Loss (dB) =             
-

 

(5/N) log PFA

Dotted Curve      PFA   = 10-4

Dashed Curve     PFA  = 10-6

Solid Curve         PFA  = 10-8

N = 15 to 20 (typically)

Since a finite number of 
cells are used, the estimate 
of the clutter or noise is 
not precise.

Number of Reference Cells, N

C
FA

R
 L

os
s,

 d
B

N=100

N=3

N=10

N=30

N=1

PFA

10-8
10-6
10-4

2                       5       7      10               20      50     70    100 

4 

0.4 

1 

0.5 

0.2 

0.3 

0.7 

3 

2 

5

Adapted from Skolnik, Reference 1



Radar Systems Course    55
Detection  11/1/2010

IEEE New Hampshire Section
IEEE AES Society

Summary

• Both target properties and radar design features affect the 
ability to detect signals in noise

– Fluctuating targets vs. non-fluctuating targets
– Allowable false alarm rate and integration scheme (if any)

• Integration of multiple pulses improves target detection
– Coherent integration is best when phase information is available
– Noncoherent integration and frequency diversity can improve 

detection performance, but usually not as efficient
• An adaptive detection threshold scheme is needed in real 

environments

– Many different CFAR (Constant False Alarm Rate) algorithms exist

 
to solve various problems

– All CFARs algorithms introduce some loss and additional 
processing



Radar Systems Course    56
Detection  11/1/2010

IEEE New Hampshire Section
IEEE AES Society

References

1. Skolnik, M., Introduction to Radar Systems, McGraw-Hill, 
New York,3rd

 

Ed., 2001.
2. Skolnik, M., Radar Handbook, McGraw-Hill, New York, 3rd

 Ed., 2008.
3. DiFranco, J. V. and Rubin, W. L., Radar Detection, Artech 

House, Norwood, MA, 1994.
4.

 

Whalen, A. D. and McDonough, R. N., Detection of Signals in 
Noise, Academic Press, New York, 1995.

5. Levanon, N., Radar Principles, Wiley, New York, 1988
6. Van Trees, H., Detection, Estimation, and Modulation 

Theory, Vols. I and III, Wiley, New York, 2001
7. Richards, M., Fundamentals of Radar Signal Processing, 

McGraw-Hill, New York, 2005
8. Nathanson, F., Radar Design Principles, McGraw-Hill, New 

York, 2rd

 

Ed., 1999.



Radar Systems Course    57
Detection  11/1/2010

IEEE New Hampshire Section
IEEE AES Society

Homework Problems

• From Skolnik, Reference 1
– Problems 2.5, 2.6, 2.15, 2.17, 2.18, 2.28, and 2.29
– Problems 5.13 , 5.14, and 5-18
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